SLIPLINING Sewer Rehabilitation

Centrifugally Cast Fiberglass Reinforced Polymer Mortar Pipe

Bijan Khamaian

1/12/17
Seattle

HOBAS ${ }^{\circledR}$ Make things happen.

Agenda

O Introduction on Hobas
O Slipline Pipe Product details
OFeatures and benefits
O Case histories (Sliplining)
O Questions \& answers

HOBAS ${ }^{\circledR}$ Make things happen.

Agenda

O Overview of CCFRPM Product
O Overview of Sliplining with Basic Procedure \& Design Considerations

- Common Questions
- What Pipe Will Fit?
- Can I Maintain Capacity?
- How Far Can I Push?

O Summary / Q \& A

HOBAS ${ }^{\circledR}$ Make things happen.

Product

O Centrifugally Cast Fiberglass Reinforced Polymer Mortar (CCFRPM) Pipe

O Pipe, joints and fittings
O 18 inch to 126 inch diameter ($450-3200 \mathrm{~mm}$)

O Up to 20 foot section lengths (6 meter)

HOBAS ${ }^{\circledR}$ Make things happen.

Company Information

O Licensee of HOBAS Engineering AG of Switzerland
O Worldwide organization

- Over 36,000 miles (58,000 km)
- Over 50 years

O Imported to the U.S. (early 1980's)
O Houston plant start-up (1987)
OU.S. installations = over 9.2 million feet ($2,750,000$ meters)

Hobas Pipe USA Since 1987

2,110 m $1,200 \mathrm{~mm}$

2013 Northwest Trenchless Project of the Year
 1

Congratulations to the City of Edmonton, Michels Canada Co., and Stantec Consulting Ltd. for winning the 2013 Northwest Trenchless Project of the year!

Global Organization

HOBAS ${ }^{\circledR}$ Make things happen.

Houston Factory

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

Applications

O Gravity sewers
OSewer force mains
OIndustrial effluents
O Utility corridors
OWWTP piping

- Yard piping
- Odor contol piping

OPotable and raw water
OSalt water/brine lines
OOutfalls
OCooling water
OStorm water
segregation
OPenstocks

HOBAS ${ }^{\circledR}$ Make things happen.

Installation Methods

O Direct bury
OMicrotunneling/Jacking
OSliplining
O Above ground
OTunnel carrier

HOBAS ${ }^{\circledR}$ Make things happen.

Materials

O High quality, commercial grade E-glass fibers

O Thermosetting resin

O Precisely graded aggregates

HOBAS ${ }^{\circledR}$ Make things happen.

Wall Construction (I-beam principle)

Outer layer (sand and resin)
Heavily reinforced (chopped glass and resin)
Transition (glass, resin and mortar)
Core (polymer mortar)
Transition (glass, resin and mortar)
Heavily reinforced (chopped glass and resin)
Liner (high elongation resin)

Process

Quality Control Lab

HOBAS ${ }^{\text {® }}$

HOBAS ${ }^{\circledR}$ Make things happen.

Product Testing

O Pipe production is sampled per ASTM requirements

O Tests include stiffness, deflection characteristics and mechanical properties

Long-term Performance

O Extended pressure and ring bending tests continue for a minumum of 10,000 hours

O Safe operating limits are established by following appropriate standards

HOBAS ${ }^{\circledR}$ Make things happen.

STRAIN CORROSION TEST RESULT\&

 $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ per ASTM D3262)
CERTIFICATE

CONFIRMATION

The Certification Body
of TÜV SÜD Management Service GmbH
certifies that

HOBAS PIPE USA
1413 East Richey Road Houston，TX 77073－3058 USA
has established and applies
an Environmental Management System for
Development，production，sales and customer service of Centrifugally Cast Fiber－Reinforced

Polymer Mortar（CCFRPM）Pipe－Systems．

An audit was performed，Report No． 70772724.
Proof has been fumished that the requirements according to

ISO 14001：2004
are fulfilled．The certificate is valid from 2014－03－25 until 2017－03－24
Certificate Registration No． 1210440115 TMS

Joints / Couplings

HOBAS ${ }^{\circledR}$ Make things happen.

Low Profile Bell-Spigot

Flush Bell-Spigot

Flush Bell-Spigot

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

Flush Bell-Spigot

O Elastomeric gasket seal
OPush-together assembly
OFlush to pipe OD
OExcellent performance

- 50 psi lab test
- Zero leakage
- 100 psi ext.

HOBAS ${ }^{\circledR}$ Make things happen.

Fittings

OElbows
OReducers
OFlanges
OTees
O Laterals
O Nozzles

HOBAS ${ }^{\circledR}$ Make things happen.

FIBERGLASS Manholes

OT bases
O Risers

HOBAS ${ }^{\circledR}$ Make things happen.

Standards

- ASTM D3262
- ASTM D3754
o AWWA C950
o AWWA M45

Gravity Sanitary Sewers
Sewer Force Mains \& Industrial
Water Pressure Mains
Fiberglass Pipe Design Manual

HOBAS ${ }^{\circledR}$ Make things happen.

Advantages of Sliplining

Olmproved flow capacity (increased hydraulics)
ODo live (no BYPA\$\$ pumping required)
OLong pushes (fewer pits)
OEasy to grout with higher safety factors
OElastomeric gasket push together joints

- Smaller pits
- Faster assembly

Sliplining Experience

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

Sliplining

OSemi Trenchless Method (limited excavation)

HOBAS ${ }^{\circledR}$ Make things happen.

Sliplining

O New Factory Made Pipe Within An Old Pipe

Sliplining Experience is this too fast?

"Live"

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

Sliplining Procedure

OExisting Pipe Pr

- Ver:s
- As.
- Exco +N
- Open
- Remov
- Perform
- Mandrel P

cult

HOBAS ${ }^{\circledR}$ Make things happen.

Not Round, Not a Problem!

KANALISATION BRUDERHOLZ-ST JAKOB
Neues Normalprofil der Dole 1.42/1.97m.
1:20

Profilausmasse per m Dolenlänge.

,	Mass	Typ Aim Fels	Typ B im Kies
Verdraingle Erdmasse	$m \underline{ }$	3.75	4,36
Belon inklusiv Verpuiz	m^{3}	1.46	2.07
Aussenverapulz (im offenen Graben)	m^{*}	-	3,33,
Traenverpulz $\{$ Wande, $d=1 \mathrm{~cm}$	m^{2}	4.30	
	m^{2}	0.35	
Chnere Sleinzeugfliैche	m^{2}	0.82	
Mies fuir Drainage	m 3	0.05	
Lichie Profilfläche	m^{2}	2.16	
Lichler Profilumtong	m	5.47	

Profilausmasse perm Dolenlänge

		Mase	Typ A in Fels	Ty B in Mies
	Verdraingte Endmasse	m^{3}	4.11	4.68
	Beton inkl. Verputz	$m 3$	1.52	2.10
	Aussenverputz	m^{2}	-	3.70
	dnnen $=\{$ Wände, $\alpha-1 \mathrm{~cm}$	m^{2}		40
	verputz Sankert, $d-2 \mathrm{~cm}$	m^{2}		40
	Snnere Steinzeugfläche	m^{2}		93
	Kies für Drainage	m^{3}		os
	Lichte Profilfläche	m^{2}		45
Buas A-G Ne 10343 ?	Lichter Profilumfang	m		73

2t.m. 24.

HOBAS ${ }^{\circledR}$ Make things happen.

Liner Sizes
 Standalone Design

O326 m
DN 1232×1800 GRP
(25 mm wall)

O672 m
DN 1302x1900
(27 mm wall)

HOBAS ${ }^{\circledR}$ Make things happen.

Sliplining Procedure

OLining Process

- Insert Liner Pipe
- Confirm Successful Insertion (video)
- Reinstate Any Laterals
- Grout Annulus
- Final Acceptance (video)

HOBAS ${ }^{\circledR}$ Make things happen.

Design Considerations

OLiner

- Corrosion Protection
- Leak Prevention
- Hydraulics
- Structural Reinforcement
- Installation

HOBAS ${ }^{\circledR}$ Make things happen.

Sliplining Advantages Segmental Pipes

OSegmented Systems (gasket sealed)

- Live Insertion
- Small Access Shafts
- Fast Assembly
- Quick Insertion

HOBAS ${ }^{\circledR}$ Make things happen.

Most Common Questions...

HOBAS ${ }^{\circledR}$ Make things happen.

Q1 - What Pipe Will Fit?

HOBAS ${ }^{\circledR}$ Make things happen.

Determining The Diameter

O Diameter Differences

- Generally a 5\% Decrease in Diameter is Successful
- Minimum of about 1" on R

26" CCFRPM (28 OD) into 30" (7\%)

HOBAS ${ }^{\circledR}$ Make things happen.

Determining the Diameter

OTightest Fit Recorded w/ CCFRPM

- Los Angeles, CA
- 30" nominal, 32.0" OD, installed in 33" Clay (3\%)
- Existing Clay Pipes Were 4' Joint Lengths, CCFRPM Pipes Were 10’ Joint Lengths
- Total Installation 'Run’ Was Only 400’

HOBAS ${ }^{\circledR}$ Make things happen.

Non Straight Sections

O Determining if the pipes will pass through Pl's, Curves, Offsets

- Accurate Survey
- Pipe Dimensions (Raised or Flush Bell)
- Simply Geometry
- Mandrel "Proof"

O Determining if Pipes Will Seal if they pass

- Worst Case if Liner Pipe Joints Occur at Host Pl's

Solutions to Non Straight Sections

OShort Pipe Segments

- Denver, CO
- Rehab of Curved Above Ground Sewer by Joint Angular Deflection

HOBAS ${ }^{\circledR}$ Make things happen.

Short Pipe Segments

O Los Angeles, CA
O 57" \& 63" RCP, with 51" \& 57" CCFRPM

O Seventeen 2.5 ft Long Pipes At The Front Of A 3,500 ft. Push

O Three Curves Each of 45 Foot Radius
O Push Shafts Located so Curved Areas Were At The End Of The Drives

HOBAS ${ }^{\circledR}$ Make things happen.

Solutions to Non Straight Sections

Q2 - Can I Maintain Capacity?

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

Manning's

$O Q=(1.49 / n) A R^{2 / 3} S^{1 / 2}$
OReducing Two Simultaneous Equations On The Same Slope

$$
Q_{1} / Q_{2}=\left(n_{2} / n_{1}\right)^{*}\left(D_{1} / D_{2}\right)^{8 / 3}
$$

HOBAS ${ }^{\circledR}$ Make things happen.

Liner Diameter Reduction

- 4-8 Inch Typical Step Down
o Depends On Wall "t" and Clearance

Liner
Manning's " n " 0.009
0.011

Host
Diameter for equal flow
13% Reduction vs. 0.013

13\% Reduction vs. 0.016
17\% Reduction vs. 0.018

HOBAS ${ }^{\circledR}$ Make things happen.

Capacity Change Scenarios

Material	Wall "t" vs. Dia.	Typ. Dia. Reduction	Flow Change
CCFRPM	$2 \%-3 \%$	10%	$>$
PVC	$3 \%-4 \%$	12%	$>$
HDPE - SW	$4 \%-5 \%$	14%	$=$
HDPE - PW	$6 \%-8 \%$	19%	$<$

HOBAS ${ }^{\circledR}$ Make things happen.

Where Did Flow Data Come From?

OWest Texas (Hazen Williams C=155)

OLACSD (Manning's = 0.010)

HOBAS ${ }^{\circledR}$ Make things happen.

Q3 - How Far Can I Push?

HOBAS ${ }^{\circledR}$ Make things happen.

Pushing Distances

OBuoyancy

- Flow Depth Control \& Effects

OEquipment
OFriction

- Pipe Weight

HOBAS ${ }^{\circledR}$ Make things happen.

Flow in Liner

O

HOBAS ${ }^{\circledR}$ Make things happen.

Equipment

HOBAS ${ }^{\circledR}$ Make things happen.

Friction

O Max. Safe Push Distance =

Pipe Capacity / F of S

(Pipe Weight per foot) (f)

Diameter (Inches)	Pipe Safe Load (Tons @ FS 3)	Pipe Weight (lb/ft)	Maximum Safe Pushing Distances (ft)			
			for $\mathrm{f}=$			
			0.2	0.4	0.6	1
24	39	39	10,000	5,000	3,333	2,000
36	82	82	10,000	5,000	3,333	2,000
48	164	141	11,631	5,816	3,877	2,326
60	271	213	12,723	6,362	4,241	2,545
72	448	302	14,834	7,417	4,945	2,967
96	844	520	16,231	8,115	5,410	3,246

[^0]HOBAS ${ }^{\circledR}$ Make things happen.

Friction Example

O J.O. "B" 1C for LACSD
O 51" \& 57" CCFRPM into 57" \& $63^{\prime \prime}$ RCP

O Max Pushing Force About 100 Tons On All Drives Even In Curves, Pl's and Offsets

O Average Friction Factor Was 0.3, Range of $0.25-0.50$

OMax Push 5,600 ft

HOBAS ${ }^{\circledR}$ Make things happen.

Sliplining Advantages

OSliplining Can Provide:

- Leak Free Service
- Eliminate Corrosion Deterioration
- Restore Structural Integrity
- Only General Cleaning To Allow Liner Insertion
- No Surface Cleaning or Dependence on Bond

OPreserving Capacity
OLong Insertion Pushes

- Minimal Surface Disruption

Case Study: Sliplining

Intercepting Sewer Rehab Evanston, IL

o Deteriorating 120- inch semi-elliptic cast-in-place concrete sewer

- Needed to restore hydraulic and structural integrity

Easy Installation

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

Intercepting Sewer Rehab Evanston, IL

o 7,000 feet of $110-$ and 104-inch
o Flexible manufacturing allowed for a reduction in diameter after the job had started

- Only two shafts
o 10 foot sections were provided in addition to the 20 foot sections

Lightweight Sections

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

Summary If you need....

o Corrosion resistance
o Long life
o Leak-free joints
o Structural reliability
o High flow capacity

- Easy installation
o Lower life cycle cost
- Consistent high quality
o Superior service

HOBAS ${ }^{\circledR}$ Make things happen.

Recent Local Project

EASTSIDE INTERCEPTOR SECTION 13 REHABILITATION PHASE I

HOBAS ${ }^{\circledR}$ Make things happen.
Pit \#1 South of $8^{\text {th }}$ Street

HOBAS ${ }^{\circledR}$ Make things happen.
Pit \#1 ALT

HOBAS ${ }^{\circledR}$ Make things happen.

Pit \#3 (never built \$\$)

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

O

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

O

HOBAS ${ }^{\circledR}$ Make things happen.

HOBAS ${ }^{\circledR}$ Make things happen.

Lessons Learned

OProblems

- Unknown Angle Points (Pit \#1A - Requiring an Extra Pit \$\$
- Poor Ground Conditions at Pit \#3 - Difficult pit built \$\$

OSolutions

- Provide a complete survey with the bid docs.
- Provide a complete geo-tech report with the bid docs.
(OLD CREEK BEDS ARE NOT CONTRACTOR FRIENDLY)

HOBAS ${ }^{\circledR}$ Make things happen.

[^0]: * Stiffness 36, Low Profile Bell Configuration utilized in example

